INNO • CC

Introducing non-invasive measurement of Cardiac Output and VO₂ in ventilated patients

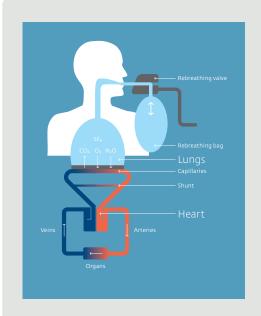
- Cardiac Output and lung volume measurement by inert gas rebreathing
- VO₂ measurement optimized for pediatric patients
- Measurement of Lung Clearance
 Index
- Compact and portable point-ofcare device

Office InnoCC ApS Forskerparken 10 5320 Odense M Denmark info@innocc.dk Phone +45 28 10 41 49 innocc.dk US Distributor
Innovision, Inc.
7 Piedmont Center, Suite 300
3525 Piedmont Rd NE
Atlanta GA 30305, USA
usa.sales@innovision.dk
Phone +1 866 443 5060
Fax +1 404 671 9422

Proven technology now available for research use

InnoCC is a spinout of the Danish company Innovision. Their state-of-the-art Innocor® technology proven in exercise and cardiopulmonary testing sites all over the world is the core technology now being developed for critical care allowing non-invasive measurements of Cardiac Output, FRC and VO₂ even in pediatric patients.

The Innocor technology has FDA approval and CE mark for use in spontaneously breathing patients and InnoCC is now performing clinical testing of the Innocor technology in ventilated patients at renowned US and German university hospitals. The prototypes are fully functional and now offered for research use until FDA approval and CE certification have been obtained, expectedly by the end of 2015.


We expect the non-invasive measurement of Cardiac Output, FRC and VO₂ to be a breakthrough in the critical care environment and as such you have the opportunity to base your research on novel and game-changing technology. Using the Innocor prototypes thus requires local approval for research usage.

The test

During a rebreathing test, the subject rebreathes an oxygen-enriched mixture containing very small amounts of two physiologically inert gases - one blood soluble and one insoluble component - from a closed rebreathing system. The test lasts about five breaths or app. 15 seconds. During this time, the blood soluble gas is dissolved in the blood perfusing the ventilated parts of the lungs. Innocor measures the concentration curve of the blood soluble gas and calculates the washout rate, which is proportional to Cardiac Output. The blood insoluble gas is measured to determine the lung volume and to account for other factors that affect the distribution of the blood soluble gas. The validity of Inert Gas Rebreathing is documented in an impressive number of peer reviewed scientific papers.

Innocor Technologies

Innocor utilizes Innovision's proprietary gas analyzer technology for measuring nitrous oxide (N₂O, blood soluble), sulphur hexafluoride (SF₆, insoluble) and CO₂ continuously and simultaneously. The advanced analyzer is a photo acoustic infrared type, which combines a fast response with unsurpassed sensitivity, accuracy and inherent stability. No tedious calibrations are required. The oxygen sensor uses laser diode absorption spectroscopy, meaning no limited life parts. A Nafion sampling tube ensures optimal humidity removal.

Parameters

CO	Cardiac output
CI	Cardiac indov

Cardiac index SV Stroke volume SI Stroke index **PBF** Pulmonary blood flow V₁ Lung volume (or FRC) HR

Heart rate SpO₂ Arterial oxygen saturation

Derived hemodynamic

Mixed venous oxygen saturation SvO₂ A-V O₂ diff Arterio-venous O2 saturation difference Shunt Intrapulmonary shunt fraction SYS Systolic blood pressure DIA Diastolic blood pressure MAP Mean arterial blood pressure SVR Systemic vascular resistance

Systemic vascular resistance index

SVRI CPO Cardiac power output CPI Cardiac power index

Metabolic

 VO_2 Oxygen uptake VO₂/kg Oxygen uptake per kg VO₂/HR Oxygen pulse VCO₂ Carbon dioxide excretion Respiratory exchange ratio V_F Expiratory minute ventilation V_{A} Alveolar ventilation

 $V_{\text{\tiny D}}$ Anatomical dead space V_{T} Tidal volume f_B Respiratory rate

F_{FT}O₂ End-tidal concentration of oxygen $F_{ET}CO_2$ End-tidal concentration of carbon

V_E/VO₂ Ventilatory equivalent for oxygen V_E/VCO₂ Ventilatory equivalent for carbon

Pulmonary

LCI Lung Clearance Index FRC **Functional Residual Capacity**